| Summation | 
          Expansion | 
          Equivalent Value | 
          Comments | 
        
        
             n 
              k 
            k=1 | 
          = 1 + 2 + 3 + 4 + .. + n | 
          = (n2 + n) / 2 
            = (1/2)n2 + (1/2)n | 
          sum of 1st n integers | 
        
        
             n 
              k 2 
            k=1 | 
          = 1 + 4 + 9 + 16 + .. + n2 | 
          = (1/6)n(n+1)(2n+1) 
            = (1/3)n3 + (1/2)n2 + (1/6)n | 
          sum of 1st n squares | 
        
        
             n 
              k 3 
            k=1 | 
          = 1 + 8 + 27 + 64 + .. + n3 | 
          = (1/4)n4 + (1/2)n3 + (1/4)n2 | 
          sum of 1st n cubes | 
        
        
             n 
              k 4 
            k=1 | 
          = 1 + 16 + 81 + 256 + .. + n4 | 
          = (1/5)n5 + (1/2)n4 + (1/3)n3 - 
            (1/30)n | 
            | 
        
        
             n 
              k 5 
            k=1 | 
          = 1 + 32 + 243 + 1024 + .. + n5 | 
          = (1/6)n6 + (1/2)n5 + (5/12)n4 
            - (1/12)n2 | 
            | 
        
        
             n 
              k 6 
            k=1 | 
          = 1 + 64 + 729 + 4096 + .. + n6 | 
          = (1/7)n7 + (1/2)n6 + (1/2)n5 - 
            (1/6)n3 + (1/42)n | 
            | 
        
        
             n 
              k 7 
            k=1 | 
          = 1 + 128 + 2187 + 16384 + .. + n7 | 
          = (1/8)n8 + (1/2)n7 + (7/12)n6 
            - (7/24)n4 + (1/12)n2 | 
            | 
        
        
             n 
              k 8 
            k=1 | 
          = 1 + 256 + 6561 + 65536 + .. + n8 | 
          = (1/9)n9 + (1/2)n8 + (2/3)n7 - 
            (7/15)n5 + (2/9)n3 - (1/30)n | 
            | 
        
        
             n 
              k 9 
            k=1 | 
          = 1 + 512 + 19683 + 262144 + .. + n9 | 
          = (1/10)n10 + (1/2)n9 + (3/4)n8 
            - (7/10)n6 + (1/2)n4 - (3/20)n2 | 
            | 
        
        
             n 
              k 10 
            k=1 | 
          = 1 + 1024 + 59049 + 1048576 + .. + n10 | 
          = (1/11)n11 + (1/2)n10 + (5/6)n9 
            - n7 + n5 - (1/2)n3 + (5/66)n | 
            |