 Home    |    Teacher    |    Parents    |    Glossary    |    About Us              Email this page to a friend   Resources  · Cool Tools · Formulas & Tables · References · Test Preparation · Study Tips · Wonders of Math Search  Differentiation Identities (Math | Calculus | Derivatives | Identities)

Definitions of the Derivative:
df / dx = lim (dx -> 0) (f(x+dx) - f(x)) / dx (right sided)
df / dx = lim (dx -> 0) (f(x) - f(x-dx)) / dx (left sided)
df / dx = lim (dx -> 0) (f(x+dx) - f(x-dx)) / (2dx) (both sided)   f(t) dt = f(x) (Fundamental Theorem for Derivatives) c f(x) = c  f(x) (c is a constant) (f(x) + g(x)) = f(x) + g(x)  f(g(x)) = f(g) * g(x) (chain rule)  f(x)g(x) = f'(x)g(x) + f(x)g '(x) (product rule) f(x)/g(x) = ( f '(x)g(x) - f(x)g '(x) ) / g^2(x) (quotient rule)

### Partial Differentiation Identities

if f( x(r,s), y(r,s) )

df / dr = df / dx * dx / DR + df / dy * dy / DR
df / ds = df / dx * dx / Ds + df / dy * dy / Ds

if f( x(r,s) )

df / DR = df / dx * dx / DR
df / Ds = df / dx * dx / Ds

directional derivative

df(x,y) / d(Xi sub a) = f1(x,y) cos(a) + f2(x,y) sin(a)
(Xi sub a) = angle counterclockwise from pos. x axis. 